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Abstract

The principal resonance of a 2dof nonlinear oscillator due to bounded random excitations is investigated.
Equations of modulation of response amplitude and phase are derived by the method of multiple scales.
Steady-state moments for the response amplitude of the system are determined through the linearized Ito
differential equation. The results of theoretical analyses are verified by numerical simulations. Saturation
phenomena are found in the random counterpart. Some recommendations for potential applications of this
random saturation phenomenon to vibration control problems are given at the end of the paper.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Saturation as a typical phenomenon in mdof nonlinear systems was first discovered by Nayfeh
et al. while studying the coupling motion of pitch and roll of a ship [1]. This phenomenon usually
happens in a system with quadratic nonlinearities subject to harmonic excitations, if the two
natural frequencies are in the ratio 2:1. When the excitation frequency is near the higher mode
natural frequency of the system, the higher mode response at first responds linearly with the
increase of the excitation amplitude. However, when the higher mode response reaches a critical
level, it will grow no more and all the additional input energies will overflow into the lower mode
see front matter r 2005 Elsevier Ltd. All rights reserved.
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response. Recently, the nonlinear phenomenon of saturation has found its applications in
vibration control. Several nonlinear vibration absorbers designed on the basis of saturation
phenomena have shown their feasibility and efficiency in practice [2–7]. However, the vibration
control problems dealt there are all for deterministic harmonic excitations.
Since random noise is often met in practice, it is important to investigate the influence of

random excitations on the response of nonlinear systems. In this paper, the principal resonance of
a 2dof nonlinear oscillator with quadratic nonlinearities subject to bounded random excitations is
investigated. The phenomenon of saturation is found in its random response form. Some
recommendations for potential applications of this phenomenon to vibration control problems
are suggested at the end of the paper.
2. Formulation of problem

The present paper is concerned with a 2dof nonlinear system with quadratic nonlinearities
under external bounded random excitations, the response problem of which is governed by the
following equation:

€u1 þ o2
1u1 þ �ð2m1 _u1 � a1u1u2Þ ¼ 0,

€u2 þ o2
2u2 þ �ð2m2 _u2 � a2u2

1Þ ¼ �xðtÞ, ð1Þ

where the overhead dots indicate differentiation with respect to time t, �51 is a small parameter,
u1 denotes the response of a second-order controller (or absorber), o1 is the natural frequency of
the controller, m1 is the damping ratio of the controller; u2 denotes the single-mode response of the
observed structure, o2 is the modal frequency of the structure, m2 is the modal damping ratio, a1
and a2 are positive gain constants, and xðtÞ is a bounded random process governed by the
following equation:

xðtÞ ¼ f cosðOtþ ḡW ðtÞ þ fÞ, (2)

where f40 is the amplitude of the random excitation, O is the center frequency, f is a random
phase, uniformly distributed within ð0; 2pÞ, W ðtÞ is a standard Wiener process, and ḡX0 is the
noise intensity. According to Stratonovich [8], the power spectrum SxðoÞ of xðtÞ is

SxðoÞ ¼
ð f ḡÞ2

2p
1

4ðO� oÞ2 þ ḡ4
þ

1

4ðOþ oÞ2 þ ḡ4

� �
. (3)

Obviously jxðtÞjp f , so xðtÞ is a bounded random process. Model (2) covers the two opposite
limiting cases of Eq. (3). The limiting procedure ḡ!1 and f !1 leads to a uniform power
spectrum of white noise. While ḡ! 0, the fluctuation spectrum SxðoÞ is vanishing over the entire
frequency range except at two discrete frequencies o ¼ �O where Sxð�OÞ goes to infinity,
implying a harmonic excitation. In some other case, SxðoÞ may represent the Dryden and von
Karman power spectrum of the air on-flow [9], hence Eq. (2) is a suitable model for random
excitation. In this paper, only the case when ḡ is small is discussed.
When ḡ ¼ f ¼ 0, i.e. the system is subject to a deterministic harmonic excitation, the internal

resonance and saturation phenomenon, together with their applications to nonlinear vibration
control have been extensively studied [2–7] recently. However, when ḡa0;fa0, i.e. the system is
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subject to a bounded random excitation, the related phenomena in the system and their potential
applications are still under development. In this paper, the random response of system (1) is
studied to find the saturation phenomenon and its potential applications in the random case.
3. Multiple scales method

The method of multiple scales [10,11] has been widely used in the analysis of deterministic
systems. Rajan and Davies [12] and Nayfeh and Serhan [13] extended this method to the analysis
of nonlinear systems under random external excitations. The present authors extended this
method to the nonlinear systems under random parametric excitations [14,15]. In this paper, we
try to investigate the response of system (1) by the multiple scale method. First, a uniformly
approximate solution of Eqs. (1) is sought in the form

unðt; �Þ ¼ un0ðT0;T1Þ þ �un1ðT0;T1Þ þ � � � ; n ¼ 1; 2, (4)

where T0 ¼ t;T1 ¼ �t are the fast and slow scales, respectively.
Throughout this paper we only discuss the first-order uniform expansion of the solution

un0ðT0;T1Þ of Eqs. (1). By denoting D0 ¼ q=qT0;D1 ¼ q=qT1, the ordinary time derivatives can be
transformed into partial derivatives as

d

dt
¼ D0 þ �D1 þ � � � ;

d2

dt2
¼ D2

0 þ 2�D0D1 þ � � � . (5)

Substituting Eqs. (4) and (5) into Eq. (1) and comparing coefficients of � with equal powers, one
obtains the following equations:

D2
0u10 þ o2

1u10 ¼ 0,

D2
0u20 þ o2

2u20 ¼ 0, ð6Þ

D2
0u11 þ o2

1u11 ¼ �2D0D1u10 � 2m1D0u10 þ a1u10u20,

D2
0u21 þ o2

2u21 ¼ �2D0D2u20 � 2m2D0u20 þ a2u2
10 þ x. ð7Þ

The general solution of Eq. (6) can be written as

un0ðT0;T1Þ ¼ AnðT1Þ expðionT0Þ þ cc; n ¼ 1; 2, (8)

where cc represents the complex conjugate of its preceding terms, and AnðT1Þ is the slowly varying
amplitude of the response. Substituting Eqs. (2) and (8) into Eq. (7), one obtains

D2
0u11 þ o2

1u11 ¼ �2io1ðA
0
1 þ m1A1Þe

io1T þ a1A1A2e
iðo2þo1ÞT0 þ a1Ā1A2e

iðo2�o1ÞT0 þ cc,

D2
0u21 þ o2

2u21 ¼ �2io2ðA
0
2 þ m2A2Þe

io2T þ a2A2
1e

2io1T0 þ a2A1Ā1 þ
f

2
eiðoT0þgW ðT1ÞþfÞ þ cc, ð9Þ

where the prime note stands for the derivative with respect to T1, the overbar stands for the
complex conjugate, and g ¼ ḡ=

ffiffi
�
p

. For unit Wiener progress W ðtÞ, with EW ðtÞ ¼ 0, and
EW 2ðtÞ ¼ t, one has

ḡW ðtÞ ¼ ḡ=
ffiffi
�
p

W ð�tÞ ¼ gW ðT1Þ.
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One can easily show that any particular solution of equations (9) contains secular terms
proportional to A01 þ m1A1 and A02 þ m2A2, respectively, and small-divisor terms for internal
resonance when o2 � 2o1, and for external resonance when O � o2. In this paper, the case of
simultaneous internal resonance and external resonance is considered.
To express quantitatively the nearness of these resonances, we introduce the detuning

parameters s1 and s2 according to

o2 ¼ 2o1 þ �s1; O ¼ o2 þ �s2.

Then, put them into

ðo2 � o1ÞT0 ¼ o1T0 þ s1T1; 2o1T0 ¼ o2T0 � s1T1; OT0 ¼ o2T þ s2T1.

Using the above equations, one can transform the small-divisor terms in Eq. (9) proportional to
exp½�iðo2 � o1ÞT0�, expð�2io1T0Þ and expð�iOT0Þ into the form of secular terms. Then,
eliminating these secular terms yields the following equation for the An:

2io1ðA
0
1 þ m1A1Þ � a1Ā1A2e

is1T1 ¼ 0,

2io2ðA
0
2 þ m2A2Þ � a2A2

1e
�is1T1 þ

f

2
eis2T1þigW ðT1Þþif ¼ 0. ð10Þ

Put An in the polar form

AnðT1Þ ¼
1
2

anðT1Þ exp½iynðT1Þ�; n ¼ 1; 2. (11)

Substituting Eq. (11) into Eq. (10) and separating the real and imaginary parts of Eq. (10), one
obtains

a01 ¼ �m1a1 þ
a1
4o1

a1a2 sin g1,

a1y
0
1 ¼ �

a1
4o1

a1a2 cos g1,

a02 ¼ �m2a2 �
a2
4o2

a2
1 sin g1 þ

f

2o2
sin g2,

a2y
0
2 ¼ �

a2
4o2

a2
1 cos g1 þ

f

2o2
cos g2,

g1 ¼ y2 � 2y1 þ s1T1; g2 ¼ y2 � s2T1 � gW ðT1Þ � f. ð12Þ

Eq. (12) is a system of first-order equations governing the modulation of amplitude and
phase. After solving an and yn, the first-order uniform expansion of the solution of Eq. (1) is
given by

un ¼
1
2

AnðT1Þ expðionT0Þ þ ccþOð�Þ

¼ 1
2

an exp½iðonT0 þ y1Þ� þ ccþOð�Þ

¼ anð�tÞ cos½ontþ ynð�tÞ� þOð�Þ. ð13Þ



ARTICLE IN PRESS

H.W. Rong et al. / Journal of Sound and Vibration 291 (2006) 48–5952
4. Steady-state response

Since Eq. (12) is difficult to solve exactly, a perturbation method is used. Assuming g is
sufficiently small, we first determine the response of system (1) when g ¼ 0. In this case, Eq. (12)
can be written as

a01 ¼ �m1a1 þ
a1
4o1

a1a2 sin g1,

a1y
0
1 ¼ �

a1
4o1

a1a2 cos g1,

a02 ¼ �m2a2 �
a2
4o2

a2
1 sin g1 þ

f

2o2
sin g2,

a2y
0
2 ¼ �

a2
4o2

a2
1 cos g1 þ

f

2o2
cos g2,

g1 ¼ y2 � 2y1 þ s1T1; g2 ¼ y2 � s2T1 � f. ð14Þ

Nontrivial steady responses an ¼ a�n; gn ¼ g�n correspond to the nontrivial fixed points of Eq. (14).
That is, they satisfy

a0n ¼ g0n ¼ 0; y01 ¼
1
2
ðs1 þ s2Þ; y02 ¼ s2

and are given by

� m1a1 þ
a1
4o1

a1a2 sin g1 ¼ 0,

1

2
ðs1 þ s2Þa1 ¼ �

a1
4o1

a1a2 cos g1,

� m2a2 �
a2
4o2

a21 sin g1 þ
f

2o2
sin g2 ¼ 0,

s2a2 ¼ �
a2
4o2

a2
1 cos g1 þ

f

2o2
cos g2. ð15Þ

There are two possibilities. First,

a1 ¼ a�1 ¼ 0; a2 ¼ a�2 ¼
f

2o2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m22 þ s22

q , (16)

which is the linear case. Second, a1a0 and a2a0 and Eq. (15) yields the following solution:

a1 ¼ a�1 ¼ 2a�1=22 �G1 �
1

4
f 2
� G2

2

� �1=2
" #1=2

,

a2 ¼ a�2 ¼ 2o1a�11 ½4m
2
1 þ ðs1 þ s2Þ

2
�1=2, ð17Þ

where

G1 ¼ 2o1o2a�11 ½2m1m2 � s2ðs1 þ s2Þ�; G2 ¼ 2o1o2a�11 ½2m1s2 þ m2ðs1 þ s2Þ�.
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It is important to note in Eq. (17) that the steady-state value of amplitude a2 is inde-
pendent of the amplitude of the excitation. This phenomenon is called saturation in deterministic
system.
Next, one can determine the condition that all roots in Eq. (17) are real. To this end, one

identifies two critical values t1 and t2 as

t1 ¼ 2jG1j; t2 ¼ 2ðG2
1 þ G2

2Þ
1=2.

Clearly, t2 must be greater than or equal to t1. Then there are two possibilities: G1X0 and G1o0.
In the former case, one real solution exists if fXt2. Qualitative analyses show that when fot2,
the steady-state solution should be in the form of Eq. (16) according to linear theory. On
the other hand, when f4t2, there are two possible solutions: a finite amplitude steady s
olution that is stable, and a trivial steady-state solution that is unstable. Hence, when f4t2, the
steady-state solution should be in the form of Eq. (17) according to nonlinear theory. More-
over, Eqs. (16) and (17) show that irrespective of whatever the initial conditions are the
motion achieves the same steady state. When G1o0 and fot1 Eq. (17) has no real solutions
and the response is in the form of Eq. (16). When f4t2 Eq. (17) has one real solution and
consequently the response is one of the following two possibilities: the solution in the form of
Eq. (16) which is unstable according to the qualitative analysis, while the other one given by Eq.
(17) is stable. When t1ofot2, Eq. (17) has two real solutions and the response has three
branches, qualitative analysis shows that among them only the largest and the smallest ones are
stable and realizable.
Next, we determine the effect of the noise, i.e. ga0, on the deterministic steady-state motion.

To this end, we let the solution of Eq. (12) in the form

an ¼ a�n þ xn; gn ¼ g�n þ yn; n ¼ 1; 2, (18)

where a�n; g
�
n are given by Eqs. (15)–(17), and xn; yn are perturbation terms. Substituting Eq. (18)

into Eq. (12) and neglecting the nonlinear terms of xn; yn, one obtains the linearization for the
modulation Eq. (12) at ða�n; g

�
nÞ

x01 ¼
1

4o1
a1a�1 sin g

�
1x2 þ

1

4o1
a1a�1a�2 cos g

�
1y1,

x02 ¼ �
1

2o2
a2a�1 sin g

�
1x1 � m2x2 �

1

4o2
a2ða�1Þ

2 cos g�1y1 þ
f

2o2
cos g�2y2,

y01 ¼ �
a2a�1 cos g

�
1

2o2a
�
2

x1 þ
a1 cos g�1
2o1

x2 þ
a2ða�1Þ

2 sin g�1
4o2a

�
2

�
a1a�2 sin g

�
1

2o1

� �
y1 �

f sin g�2
2o1a

�
2

y2,

y02 ¼ �
a2a�1 cos g

�
1

2o2a
�
2

x1 þ
a2ða�1Þ

2 sin g�1
4o2a

�
2

y1 �
f sin g�2
2o2a

�
2

y2 � gW 0ðT1Þ. ð19Þ

By denoting X ¼ ðx1;x2; y1; y2Þ
T, Eq. (19) can be substituted into the following Ito

equation:

dX ¼ AX dT1 þ BdW ðT1Þ, (20)
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where A and B are the coefficient matrices

A ¼

0 1
4o1

a1a�1 sin g
�
1

1
4o1

a1a�1a�2 cos g
�
1 0

� 1
2o2

a2a�1 sin g
�
1 �m2 � 1

4o2
a2ða�1Þ

2 cos g�1
f

2o2
cos g�2

�
a2a�

1
cos g�

1
2o2a�

2

a1 cos g
�
1

2o1

a2ða
�
1
Þ2 sin g�

1
4o2a�

2
�

a1a�
2
sin g�

1
2o1

�
f sin g�

2
2o1a�

2

�
a2a�

1
cos g�

1
2o2a�

2
0

a2ða
�
1
Þ2 sin g�

1
4o2a�

2
�

f sin g�
2

2o2a�
2

2
66666666664

3
77777777775
,

B ¼ ½0; 0; 0;�g�T.

Eq. (20) is a linear Ito equation, so by using the Ito rule the steady-state moments Exn and Ex2
n

can be obtained by the moment method [16]. For the steady-state moments, one has

dExn

dT1
¼

dEyn

dT1
¼ 0.

Taking expectation on both sides of Eq. (20), one obtains

Exn ¼ Eyn ¼ 0; n ¼ 1; 2. (21)

Similarly, one has

dEx2
1

dT1
¼

dEx1x2

dT1
¼

dEx1y1
dT1

¼
dEx1y2

dT1
¼

dEx2
2

dT1
¼

dEx2y1
dT1

¼
dEx2y2

dT1
¼

dEy21
dT1
¼

dEy1y2

dT1
¼

dEy22
dT1
¼ 0.

Using the above equations and Eq. (20), one obtains

EXTðAI1j þ I1jAÞX ¼ 0; j ¼ 1; 2; 3; 4,

EXTðAI2j þ I2jAÞX ¼ 0; j ¼ 2; 3; 4,

EXTðAI3j þ I3jAÞX ¼ 0; j ¼ 3; 4,

EXTðAI44 þ I44AÞX ¼ g2, ð22Þ

where I ij denotes a 4� 4 matrix, with the ði; jÞ element of I ij equal to 1 and the other elements
equal to zero. Eq. (22) contains 10 linear equations, while the unknown parameters are the
following 10 second-order steady-state moments:

Ex2
1;Ex1x2;Ex1y1;Ex1y2;Ex1y2;Ex2y1;Ex2y2;Ey21;Ey1y2;Ey22.

Hence they can be solved by Eq. (22). Combining Eqs. (18), (21) and (22), one obtains

Ean ¼ a�n; Ea2n ¼ ða
�
nÞ

2
þ Ex2

n; n ¼ 1; 2. (23)



ARTICLE IN PRESS

H.W. Rong et al. / Journal of Sound and Vibration 291 (2006) 48–59 55
5. Numerical simulations

For the method of numerical simulations, the reader is referred to Zhu [16] and Shinozuka
[17,18]. Eq. (2) for xðtÞ can be rewritten as follows:

xðtÞ ¼ h cosðcðtÞÞ,
_cðtÞ ¼ Oþ gzðtÞ; zðtÞ ¼ _W ðtÞ, ð24Þ

where Gaussian white noise zðtÞ stands for the formal derivative of a standard Wiener process.
Since white noise has a uniform power spectrum and is physically unrealizable, for numerical
simulations one may take a broad-band one for instead, e.g. take the power spectrum of zðtÞ as

SzðoÞ ¼
1; 0oop2O;

0; o42O:

(
(25)

In practice, it is more convenient to take the pseudorandom signal for zðtÞ given by [16]

zðtÞ ¼

ffiffiffiffiffiffi
4O
N

r XN

k¼1

cos
O
N
ð2k � 1Þtþ jk

� �
, (26)

where jk’s are mutually independent and uniformly distributed in ð0; 2p�, and N is a large integer
number.
In the following numerical simulations, the parameters for system (1) are chosen as follows:

a1 ¼ a2 ¼ 1:0; m1 ¼ m2 ¼ 0:2; o1 ¼ 1:0; � ¼ 0:1.

The governing Eq. (1) is numerically integrated by the fourth-order Runge–Kutta algorithm, and
the numerical results are shown in Figs. 1 and 2.
When ḡ ¼ 0, the variations of the steady-state response with f are shown in Fig. 1, and the

theoretical results given by Eqs. (16) and (17) are also shown there for comparison.
Fig. 1 shows the response curves for a representative case: s1 ¼ 1:0; s2 ¼ 0:0, G140. Both Fig. 1

and Eq. (17) clearly show a saturation phenomenon. The steady-state value of the amplitude a2 of
the directly excited mode is independent of the amplitude of the excitation f as long as it is above
the critical value t2. However, the steady-state value of the amplitude a1 of the indirectly excited
mode (through internal resonance) increases with increasing value of the excitation amplitude.
Next, we determine the effect of the noise term ḡW ðtÞ on the primary response. When

s1 ¼ 1:0; s2 ¼ 0:0; g ¼ 0:002, the variations of the steady-state response with f are shown in Fig. 2;
for comparison, the theoretical results given by Eq. (23) are also shown in Fig. 2.
Fig. 2 shows that when g is small enough, saturation phenomenon still exists in random excited

case. The steady-state moment Ea22 of the directly excited mode is independent of the amplitude of
the excitation f after f reaches some critical value. One may call it random saturation. From Eq.
(23), one can see the steady-state moment Ea2 also has the phenomenon of random saturation.
One can also see the evolution of energy distribution between responses of the controller

and the structure through the numerical simulation for sample time histories of u1ðtÞ and u2ðtÞ.
For f ¼ 3:0;s1 ¼ 1:0; s2 ¼ 0:0; g ¼ 0:002, a pair of sample time histories of u1ðtÞ and u2ðtÞ are
shown in Fig. 3.
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Fig. 1. Response of system (1) (s1 ¼ 1:0; s2 ¼ 0:0, ḡ ¼ 0): — stable solution; – – – unstable solution; � � � numerical

solution.

Fig. 2. Response of system (1) (s1 ¼ 1:0; s2 ¼ 0:0, g ¼ 0:002): — stable solution; – – – unstable solution; � � �

numerical solution.
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Fig. 3 shows the process of a typical control by using the random saturation and internal
resonance. The energy put forward to the structure u2 by the random excitation is largely
transferred to the controller u1. The nonlinear terms a1u1u2 and a2u22 in system (1) act as energy
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Fig. 3. Time history of u1ðtÞ and u2ðtÞ.
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bypasses to exchange energy between the structure and the controller, resulting in a somewhat
beating phenomenon in response to the coupled system.
6. Conclusion and discussion

Since in system (1) the controller plays the role of a vibration absorber, where the parameters,
including the natural angular frequency o1, the damping ratio m1, and the positive gain constants
a1 and a2 are adjustable. Since u2 represents the structural modal response to be suppressed, the
natural angular frequency o2 and the damping ratio m2 of the structure are not adjustable. The
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amplitude f , the center frequency O of the random excitation, and the noise intensity ḡ are the
given parameters depending upon the external environment. Hence, one could only reasonably
adjust the system parameters a1; a2; m1;s1 to bring the saturation phenomenon and resonance
effect into full play to suppress the response of the structure u2 or Ea2

2.
The 1:2 internal resonance (o2 � 2o1) and the random saturation phenomenon have been used

to design nonlinear controller in system (1). However, other types of vibration absorbers which
have been used in the deterministic harmonic excitation case [5] can also be used in the random
excitation case. First, we can use 1:3 (o2 � 3o1) internal resonance to design the following
vibration absorber:

€u1 þ o2
1u1 þ �ð2m1 _u1 � a1u2

1u2Þ ¼ 0,

€u2 þ o2
2u2 þ �ð2m2 _u2 � a2u3

1Þ ¼ �xðtÞ

and

€u1 þ o2
1u1 þ �ð2m1 _u1 � a1u1 _u1 _u2Þ ¼ 0,

€u2 þ o2
2u2 þ �ð2m2 _u2 � a2u3

1Þ ¼ �xðtÞ.

Then, we can use 1:4 (o2 � 4o1) internal resonance to design the following vibration absorber:

€u1 þ o2
1u1 þ �ð2m1 _u1 � a1u2

1 _u1 _u2Þ ¼ 0,

€u2 þ o2
2u2 þ �ð2m2 _u2 � a2u4

1Þ ¼ �xðtÞ

and

€u1 þ o2
1u1 þ �ð2m1 _u1 � a1u21 _u1 _u2Þ ¼ 0,

€u2 þ o2
2u2 þ �ð2m2 _u2 � a2u21 _u

2
1Þ ¼ �xðtÞ,

where u1 represents the controller and u2 represents the structure.
Furthermore, we can use 1:2:4 (o3 � 2o2 � 4o1) internal resonance to design the following

vibration absorber:

€u1 þ o2
1u1 þ �ð2m1 _u1 � a1u1 _u1 _u3Þ ¼ 0,

€u2 þ o2
2u2 þ �ð2m2 _u2 � a2 _u2 _u3Þ ¼ 0,

€u2 þ o2
3u3 þ �ð2m3 _u3 � a3u21 _u

2
1 � a4u22Þ ¼ �xðtÞ,

where u1 and u2 represent the controller and u3 represents the structure.
Of course, the characteristics of these vibration absorbers need further research.
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